When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.

  3. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The technique essentially involves using data from, for example, censuses relating to various types of people corresponding to different characteristics (e.g., age, race), in a first step to estimate the relationship between those types and individual preferences (i.e., multi-level regression of the dataset).

  4. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    It is computationally just as fast as forward selection. It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune the model. If two variables are almost equally correlated with the response, then their coefficients should increase at approximately the same rate.

  5. Akaike information criterion - Wikipedia

    en.wikipedia.org/wiki/Akaike_information_criterion

    Claeskens, G.; Hjort, N. L. (2008), Model Selection and Model Averaging, Cambridge University Press. [Note: the AIC defined by Claeskens & Hjort is the negative of the standard definition—as originally given by Akaike and followed by other authors.]

  6. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    Similarly, for a regression analysis, an analyst would report the coefficient of determination (R 2) and the model equation instead of the model's p-value. However, proponents of estimation statistics warn against reporting only a few numbers. Rather, it is advised to analyze and present data using data visualization.

  7. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  8. Matching (statistics) - Wikipedia

    en.wikipedia.org/wiki/Matching_(statistics)

    Overmatching, or post-treatment bias, is matching for an apparent mediator that actually is a result of the exposure. [12] If the mediator itself is stratified, an obscured relation of the exposure to the disease would highly be likely to be induced. [13] Overmatching thus causes statistical bias. [13]

  9. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    In contrast to the case of best linear unbiased estimation, the "quantity to be estimated", ~, not only has a contribution from a random element but one of the observed quantities, specifically which contributes to ^, also has a contribution from this same random element.