When.com Web Search

  1. Ad

    related to: volume change in thermodynamics problems examples

Search results

  1. Results From The WOW.Com Content Network
  2. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    The volume of a thermodynamic system typically refers to the volume of the working fluid, such as, for example, the fluid within a piston. Changes to this volume may be made through an application of work, or may be used to produce work. An isochoric process however operates at a constant-volume, thus no work can be produced. Many other ...

  3. Isochoric process - Wikipedia

    en.wikipedia.org/wiki/Isochoric_process

    Replacing work with a change in volume gives = Since the process is isochoric, dV = 0 , the previous equation now gives d U = d Q {\displaystyle dU=dQ} Using the definition of specific heat capacity at constant volume, c v = ( dQ / dT )/ m , where m is the mass of the gas, we get d Q = m c v d T {\displaystyle dQ=mc_{\mathrm {v} }\,dT}

  4. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    In a thermodynamic system, transfers of extensive quantities are associated with changes in respective specific intensive quantities. For example, a volume transfer is associated with a change in pressure. An entropy change is associated with a temperature change.

  5. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...

  8. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An example of a cycle of idealized thermodynamic processes which make up the Stirling cycle. A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown.

  9. Charles's law - Wikipedia

    en.wikipedia.org/wiki/Charles's_law

    where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.