Search results
Results From The WOW.Com Content Network
The same inversion transforms Q into itself, and (in general) the given circle C into another circle c. Thus, the problem becomes that of finding a solution line that passes through Q and is tangent to c, which was solved above; there are two such lines. Re-inversion produces the two corresponding solution circles of the original problem.
A general Apollonius problem can be transformed into the simpler problem of circle tangent to one circle and two parallel lines (itself a special case of the LLC special case). To accomplish this, it suffices to scale two of the three given circles until they just touch, i.e., are tangent.
Van Roomen solved the general problem by solving a simpler problem, that of finding the circles that are tangent to two given circles, such as C 1 and C 2. He noted that the center of a circle tangent to both given circles must lie on a hyperbola whose foci are the centers of the given circles.
This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 2 3, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given ...
Apollonius' problem is to construct circles that are simultaneously tangent to three specified circles. The solutions to this problem are sometimes called the circles of Apollonius . The Apollonian gasket —one of the first fractals ever described—is a set of mutually tangent circles, formed by solving Apollonius' problem iteratively.
Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the ...
A circle that passes through the center O of the reference circle inverts to a line not passing through O, but parallel to the tangent to the original circle at O, and vice versa; whereas a line passing through O is inverted into itself (but not pointwise invariant). [5] A circle not passing through O inverts to a circle not passing through O ...
In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...