Search results
Results From The WOW.Com Content Network
In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest. Those ...
This is the smallest value for which we care about observing a difference. Now, for (1) to reject H 0 with a probability of at least 1 − β when H a is true (i.e. a power of 1 − β), and (2) reject H 0 with probability α when H 0 is true, the following is necessary: If z α is the upper α percentage point of the standard normal ...
In general, with a normally-distributed sample mean, Ẋ, and with a known value for the standard deviation, σ, a 100(1-α)% confidence interval for the true μ is formed by taking Ẋ ± e, with e = z 1-α/2 (σ/n 1/2), where z 1-α/2 is the 100(1-α/2)% cumulative value of the standard normal curve, and n is the number of data values in that ...
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
If one makes the parametric assumption that the underlying distribution is a normal distribution, and has a sample set {X 1, ..., X n}, then confidence intervals and credible intervals may be used to estimate the population mean μ and population standard deviation σ of the underlying population, while prediction intervals may be used to estimate the value of the next sample variable, X n+1.
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample ( 10 8 + 4 , 10 8 + 7 , 10 8 + 13 , 10 8 + 16 ), which gives rise to the same estimated variance as the first sample.
A "parameter" is to a population as a "statistic" is to a sample; that is to say, a parameter describes the true value calculated from the full population (such as the population mean), whereas a statistic is an estimated measurement of the parameter based on a sample (such as the sample mean).