When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).

  3. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    where e is the eccentricity and l is the semi-latus rectum. As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Mathematically, an ellipse can be represented by the formula: r = p 1 + ε cos ⁡ θ , {\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},} where p {\displaystyle p} is the semi-latus rectum , ε is the eccentricity of the ellipse, r is the distance from the Sun to the planet, and θ is the angle to the planet's current position from ...

  7. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    Where is called the semi-latus rectum of the curve. This form of the equation is particularly useful when dealing with parabolic trajectories, for which the semi-major axis is infinite. Despite developing these laws from observations, Kepler was never able to develop a theory to explain these motions. [2]

  8. Universal parabolic constant - Wikipedia

    en.wikipedia.org/wiki/Universal_parabolic_constant

    The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.

  9. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    where (h, k) is the center of the ellipse in Cartesian coordinates, in which an arbitrary point is given by (x, y).The semi-major axis is the mean value of the maximum and minimum distances and of the ellipse from a focus — that is, of the distances from a focus to the endpoints of the major axis