Search results
Results From The WOW.Com Content Network
A random variable is a measurable function: from a sample space as a set of possible outcomes to a measurable space.The technical axiomatic definition requires the sample space to be a sample space of a probability triple (,,) (see the measure-theoretic definition).
Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.
However, it is possible to define a conditional probability for some zero-probability events, for example by using a σ-algebra of such events (such as those arising from a continuous random variable). [34] For example, in a bag of 2 red balls and 2 blue balls (4 balls in total), the probability of taking a red ball is /; however, when taking a ...
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
Stochastic (/ s t ə ˈ k æ s t ɪ k /; from Ancient Greek στόχος (stókhos) 'aim, guess') [1] is the property of being well-described by a random probability distribution. [1] Stochasticity and randomness are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; in everyday ...
The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.