When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...

  3. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [ 3 ] [ 4 ] As in many proofs of irrationality, it is a proof by contradiction .

  4. Apéry's constant - Wikipedia

    en.wikipedia.org/wiki/Apéry's_constant

    Although this has so far not produced any results on specific numbers, it is known that infinitely many of the odd zeta constants ζ(2n + 1) are irrational. [7] In particular at least one of ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational. [8] Apéry's constant has not yet been proved transcendental, but it is known to be an algebraic period ...

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Irrational numbers can also be expressed as non-terminating continued fractions (which in some cases are periodic), and in many other ways. As a consequence of Cantor's proof that the real numbers are uncountable and the rationals countable, it follows that almost all real numbers are irrational. [3]

  6. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    Later, in 1891, Cantor used his more familiar diagonal argument to prove the same result. [17] While Cantor's result is often quoted as being purely existential and thus unusable for constructing a single transcendental number, [18] [19] the proofs in both the aforementioned papers give methods to construct transcendental numbers. [20]

  7. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  8. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Irrational number. irrationality of log 2 3; irrationality of the square root of 2; Mathematical induction. sum identity; Power rule. differential of x n; Product and Quotient Rules; Derivation of Product and Quotient rules for differentiating. Prime number. Infinitude of the prime numbers; Primitive recursive function; Principle of bivalence

  9. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In addition to theorems of geometry, such as the Pythagorean theorem, the Elements also covers number theory, including a proof that the square root of two is irrational and a proof that there are infinitely many prime numbers. Further advances also took place in medieval Islamic mathematics.