Search results
Results From The WOW.Com Content Network
A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...
Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [ 3 ] [ 4 ] As in many proofs of irrationality, it is a proof by contradiction .
Although this has so far not produced any results on specific numbers, it is known that infinitely many of the odd zeta constants ζ(2n + 1) are irrational. [7] In particular at least one of ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational. [8] Apéry's constant has not yet been proved transcendental, but it is known to be an algebraic period ...
Irrational numbers can also be expressed as non-terminating continued fractions (which in some cases are periodic), and in many other ways. As a consequence of Cantor's proof that the real numbers are uncountable and the rationals countable, it follows that almost all real numbers are irrational. [3]
Later, in 1891, Cantor used his more familiar diagonal argument to prove the same result. [17] While Cantor's result is often quoted as being purely existential and thus unusable for constructing a single transcendental number, [18] [19] the proofs in both the aforementioned papers give methods to construct transcendental numbers. [20]
For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.
Irrational number. irrationality of log 2 3; irrationality of the square root of 2; Mathematical induction. sum identity; Power rule. differential of x n; Product and Quotient Rules; Derivation of Product and Quotient rules for differentiating. Prime number. Infinitude of the prime numbers; Primitive recursive function; Principle of bivalence
In addition to theorems of geometry, such as the Pythagorean theorem, the Elements also covers number theory, including a proof that the square root of two is irrational and a proof that there are infinitely many prime numbers. Further advances also took place in medieval Islamic mathematics.