Search results
Results From The WOW.Com Content Network
The force between two identical cylindrical bar magnets placed end to end at great distance is approximately: [2] [(+)] [+ (+) (+)] where B 0 is the flux density very close to each pole, in T, A is the area of each pole, in m 2 ,
where is the magnetic force constant from the Biot–Savart law, / is the total force on either wire per unit length of the shorter (the longer is approximated as infinitely long relative to the shorter), is the distance between the two wires, and , are the direct currents carried by the wires.
3 Forces between two magnetic dipoles. 4 Dipolar fields from finite sources. ... where r is the distance between dipoles. The force acting on m 1 is in the opposite ...
In a case when the external magnetic field is non-uniform, there will be a force, proportional to the magnetic field gradient, acting on the magnetic moment itself. There are two expressions for the force acting on a magnetic dipole, depending on whether the model used for the dipole is a current loop or two monopoles (analogous to the electric ...
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles.Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field.
The strength of a magnetic field always decreases with distance from the magnetic source, [2] though the exact mathematical relationship between strength and distance varies. Many factors can influence the magnetic field of an object including the magnetic moment of the material, the physical shape of the object, both the magnitude and ...
Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.
The magnetic pole model: two opposing poles, North (+) and South (−), separated by a distance d produce a H-field (lines). Historically, early physics textbooks would model the force and torques between two magnets as due to magnetic poles repelling or attracting each other in the same manner as the Coulomb force between electric charges. At ...