When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The potential energy and hence, also the electric potential, is only defined up to an additive constant: one must arbitrarily choose a position where the potential energy and the electric potential are zero. These equations cannot be used if , i.e., in the case of a non-conservative electric field (caused by a changing magnetic field; see ...

  3. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    The high-potential case becomes more complex so if applicable, use the low-potential equation. In the low-potential condition, the linearized version of the Poisson–Boltzmann equation (shown below) is valid, and it is commonly used as it is more simple and spans a wide variety of cases.

  4. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Summary of electrostatic relations between electric potential, electric field and charge density. Here, r = x − x ′ {\displaystyle \mathbf {r} =\mathbf {x} -\mathbf {x'} } . If the electric field in a system can be assumed to result from static charges, that is, a system that exhibits no significant time-varying magnetic fields, the system ...

  5. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  6. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  7. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  8. Uniqueness theorem for Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_theorem_for...

    The uniqueness theorem for Poisson's equation states that, for a large class of boundary conditions, the equation may have many solutions, but the gradient of every solution is the same. In the case of electrostatics , this means that there is a unique electric field derived from a potential function satisfying Poisson's equation under the ...

  9. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...