Search results
Results From The WOW.Com Content Network
The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes
Calculating the lift per unit span using Kutta–Joukowski requires a known value for the circulation. In particular, if the Kutta condition is met, in which the rear stagnation point moves to the airfoil trailing edge and attaches there for the duration of flight, the lift can be calculated theoretically through the conformal mapping method.
The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.
In both cases the lift vector is the same (as seen by an observer on the ground), but in the latter the vertical axis of the aircraft points downwards, making the lift vector's sign negative. In turning flight the load factor is normally greater than +1. For example, in a turn with a 60° angle of bank the load factor is +2. Again, if the same ...
Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a
At low angles of attack, the lift is generated primarily by the wings, fins and the nose region of the body. The total lift acts at a distance ahead of the centre of gravity (it has a negative value in the figure), this, in missile parlance, is the centre of pressure . If the lift acts ahead of the centre of gravity, the yawing moment will be ...
= where is the aircraft lift coefficient. The lift and drag forces can be applied at a single point, the center of pressure. However, the location of the center of pressure moves significantly with a change in angle of attack and is thus impractical for aerodynamic analysis.
Bernoulli's principle can be used to calculate the lift force on an airfoil, if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the ...