Search results
Results From The WOW.Com Content Network
It can only choose a new state, the result of following the transition. A pushdown automaton (PDA) differs from a finite state machine in two ways: It can use the top of the stack to decide which transition to take. It can manipulate the stack as part of performing a transition. A pushdown automaton reads a given input string from left to right.
The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]
The halting problem for a register machine: a finite-state automaton with no inputs and two counters that can be incremented, decremented, and tested for zero. Universality of a nondeterministic pushdown automaton: determining whether all words are accepted. The problem whether a tag system halts.
An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...
The earlier concept of Turing machine was also included in the discipline along with new forms of infinite-state automata, such as pushdown automata. 1956 saw the publication of Automata Studies, which collected work by scientists including Claude Shannon, W. Ross Ashby, John von Neumann, Marvin Minsky, Edward F. Moore, and Stephen Cole Kleene. [4]
A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value ...
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
Computation histories can be used to show that certain problems for pushdown automata are undecidable. This is because the language of non-accepting computation histories of a Turing machine on input is a context-free language recognizable by a non-deterministic pushdown automaton.