Search results
Results From The WOW.Com Content Network
[0, 1] 2 is a totally bounded space because for every ε > 0, the unit square can be covered by finitely many open discs of radius ε. A metric space (,) is totally bounded if and only if for every real number >, there exists a finite collection of open balls of radius whose centers lie in M and whose union contains M.
The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and
X is closed and bounded (as a subset of any metric space whose restricted metric is d). The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but ...
The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded. To see this, start with a finite cover by r-balls for some arbitrary r. Since the subset of M consisting of the centers of these balls is finite, it has finite diameter, say D.
Isomorphisms between metric spaces are called isometries. Every metric space is also a topological space. A topological space is called metrizable, if it underlies a metric space. All manifolds are metrizable. In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge ...
The collection of all bounded sets on a topological vector space is called the von Neumann bornology or the (canonical) bornology of .. A base or fundamental system of bounded sets of is a set of bounded subsets of such that every bounded subset of is a subset of some . [1] The set of all bounded subsets of trivially forms a fundamental system of bounded sets of .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity.