When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission reactions are subcritical fission reactors.

  3. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    A critical chain reaction can be achieved at low concentrations of 235 U if the neutrons from fission are moderated to lower their speed, since the probability for fission with slow neutrons is greater. A fission chain reaction produces intermediate mass fragments which are highly radioactive and produce further energy by their radioactive decay.

  4. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    Hahn was awarded the 1944 Nobel Prize in Chemistry for the discovery of nuclear fission. Hahn and Strassmann at the Kaiser Wilhelm Institute for Chemistry in Berlin bombarded uranium with slow neutrons and discovered that barium had been produced. Hahn suggested a bursting of the nucleus, but he was unsure of what the physical basis for the ...

  5. Nuclear Fission Has Been Damn Near Impossible to Find ... - AOL

    www.aol.com/nuclear-fission-damn-near-impossible...

    This fission occurs when atomic nuclei grab free neutrons and form heavy, but unstable, elements. When it comes to nuclear energy , human engineering and the rest of the universe are a bit at odds.

  6. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  7. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...

  8. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    There are also five other trace isotopes: uranium-240, a decay product of plutonium-244; [111] uranium-239, which is formed when 238 U undergoes spontaneous fission, releasing neutrons that are captured by another 238 U atom; uranium-237, which is formed when 238 U captures a neutron but emits two more, which then decays to neptunium-237 ...

  9. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    Another neutron leaves the system without being absorbed. However, one neutron does collide with an atom of uranium-235, which then fissions and releases two neutrons and more binding energy. 3) Both of those neutrons collide with uranium-235 atoms, each of which fissions and releases a few neutrons, which can then continue the reaction.