When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multilinear principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Multilinear_principal...

    Multilinear principal component analysis (MPCA) is a multilinear extension of principal component analysis (PCA) that is used to analyze M-way arrays, also informally referred to as "data tensors". M-way arrays may be modeled by linear tensor models, such as CANDECOMP/Parafac, or by multilinear tensor models, such as multilinear principal ...

  3. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  4. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Also, the power method is the starting point for many more sophisticated algorithms. For instance, by keeping not just the last vector in the sequence, but instead looking at the span of all the vectors in the sequence, one can get a better (faster converging) approximation for the eigenvector, and this idea is the basis of Arnoldi iteration. [11]

  6. Tucker decomposition - Wikipedia

    en.wikipedia.org/wiki/Tucker_decomposition

    For a 3rd-order tensor , where is either or , Tucker Decomposition can be denoted as follows, = () where is the core tensor, a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of , which are defined as the Frobenius norm of the 1-mode, 2-mode and 3-mode slices of tensor respectively.

  7. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  8. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    Starting in the early 2000s, Vasilescu addressed causal questions by reframing the data analysis, recognition and synthesis problems as multilinear tensor problems. The power of the tensor framework was showcased by decomposing and representing an image in terms of its causal factors of data formation, in the context of Human Motion Signatures ...

  9. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...