Search results
Results From The WOW.Com Content Network
The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters. In the algebra of random variables , inverse distributions are special cases of the class of ratio distributions , in which the numerator random variable has a degenerate distribution .
Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations.
It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen. [1] [2] [3] It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture ...
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense: [9] if and are independent random variables that are NIG-distributed with the same values of the parameters and , but possibly different values of the location and scale parameters, , and ,, respectively, then + is NIG-distributed with parameters ,, + and +.
In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y, where X and Y are independent, X is Gaussian with mean μ and variance σ 2, and Y is ...