Search results
Results From The WOW.Com Content Network
The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
A prime number q is a strong prime if q + 1 and q − 1 both have some large (around 500 digits) prime factors. For a safe prime q = 2p + 1, the number q − 1 naturally has a large prime factor, namely p, and so a safe prime q meets part of the criteria for being a strong prime.
Suppose we wish to determine whether n = 221 is prime.Randomly pick 1 < a < 220, say a = 38.We check the above congruence and find that it holds: = (). Either 221 is prime, or 38 is a Fermat liar, so we take another a, say 24:
Input #1: b, the number of bits of the result Input #2: k, the number of rounds of testing to perform Output: a strong probable prime n while True: pick a random odd integer n in the range [2 b−1, 2 b −1] if the Miller–Rabin test with inputs n and k returns “probably prime” then return n