Search results
Results From The WOW.Com Content Network
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
With the formula presented in the previous section, the API gravity can be readily calculated. When converting oil density to specific gravity using the above definition, it is important to use the correct density of water, according to the standard conditions used when the measurement was made.
Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note: 1 statute mile = 5,280 feet = 1,609 meters
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane. Thus, the system could be understood as representing a practical spectrum of the density of liquids between −100 and 100, with values near 0 being the approximate density of water.
Ad-Free AOL Mail is only available when viewing email on the web from a computer or mobile device. If you access AOL Mail from the AOL Desktop software or mobile app, you will continue to see paid ...
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
An amagat (denoted amg or Am [1]) is a practical unit of volumetric number density. Although it can be applied to any substance at any conditions, it is defined as the number of ideal gas molecules per unit volume at 1 atm (101.325 kPa) and 0 °C (273.15 K). [2] It is named after Émile Amagat, who also has Amagat's law named after him.