Search results
Results From The WOW.Com Content Network
The example Turing machine handles a string of 0s and 1s, with 0 represented by the blank symbol. Its task is to double any series of 1s encountered on the tape by writing a 0 between them. For example, when the head reads "111", it will write a 0, then "111".
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
A simple generalization is the extension to Turing machines with m symbols instead of just 2 (0 and 1). [10] For example a trinary Turing machine with m = 3 symbols would have the symbols 0, 1, and 2. The generalization to Turing machines with n states and m symbols defines the following generalized busy beaver functions:
A linear bounded automaton is a Turing machine that satisfies the following three conditions: Its input alphabet includes two special symbols, serving as left and right endmarkers. Its transitions may not print other symbols over the endmarkers. Its transitions may neither move to the left of the left endmarker nor to the right of the right ...
Smith's proof has unleashed a debate on the precise operational conditions a Turing machine must satisfy in order for it to be candidate universal machine. A universal (2,3) Turing machine has conceivable applications. [19] For instance, a machine that small and simple can be embedded or constructed using a small number of particles or molecules.
Martin Davis makes a persuasive argument that Turing's conception of what is now known as "the stored-program computer", of placing the "action table"—the instructions for the machine—in the same "memory" as the input data, strongly influenced John von Neumann's conception of the first American discrete-symbol (as opposed to analog) computer—the EDVAC.
Description numbers are numbers that arise in the theory of Turing machines. They are very similar to Gödel numbers, and are also occasionally called "Gödel numbers" in the literature. Given some universal Turing machine, every Turing machine can, given its encoding on that machine, be assigned a number. This is the machine's description number.
A Turing machine is a hypothetical computing device, first conceived by Alan Turing in 1936. Turing machines manipulate symbols on a potentially infinite strip of tape according to a finite table of rules, and they provide the theoretical underpinnings for the notion of a computer algorithm.