Search results
Results From The WOW.Com Content Network
The locus of these points (the inflection point within a G-x or G-c curve, Gibbs free energy as a function of composition) is known as the spinodal curve. [1] [2] [3] For compositions within this curve, infinitesimally small fluctuations in composition and density will lead to phase separation via spinodal decomposition.
For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.
The black energy curve shows the increase in Gibbs energy as a reduced molecule moves closer to the electrode. The two energy curves intersect at Δ G ∗ ( 0 ) {\displaystyle \Delta G^{*}(0)} . Applying a potential E to the electrode will move the energy curve downward [ Note 3 ] (to the red curve) by nFE and the intersection point will move ...
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
Ragone plot showing specific energy versus specific power for various energy-storing devices. A Ragone plot (/ r ə ˈ ɡ oʊ n iː / rə-GOH-nee) [1] is a plot used for comparing the energy density of various energy-storing devices. On such a chart the values of specific energy (in W·h/kg) are plotted versus specific power (in W/kg).
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
The total energy density U can be similarly calculated, except the integration is over the whole sphere and there is no cosine, and the energy flux (U c) should be divided by the velocity c to give the energy density U: = (,) Thus / is replaced by , giving an extra factor of 4.
As originally formulated, the Lawson criterion gives a minimum required value for the product of the plasma (electron) density n e and the "energy confinement time" that leads to net energy output. Later analysis suggested that a more useful figure of merit is the triple product of density, confinement time, and plasma temperature T .