When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.

  3. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    We may write down the Lagrangian in terms of the position coordinates as they are, but it is an established procedure to convert the two-body problem into a one-body problem as follows. Introduce the Jacobi coordinates ; the separation of the bodies r = r 2 − r 1 and the location of the center of mass R = ( m 1 r 1 + m 2 r 2 )/( m 1 + m 2 ) .

  4. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).

  5. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s. Note that since the excess force increases as R 3 and Stokes' drag increases as R , the terminal velocity increases as R 2 and thus varies greatly with particle size as shown below.

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  8. Contact dynamics - Wikipedia

    en.wikipedia.org/wiki/Contact_dynamics

    Consider a block which can slide or stick on a table (see figure 1a). The motion of the block is described by the equation of motion, whereas the friction force is unknown (see figure 1b). In order to obtain the friction force, a separate force law must be specified which links the friction force to the associated velocity of the block.

  9. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    This means that a subsonic flow entering a duct with friction will have an increase in its Mach number until the flow is choked. Conversely, the Mach number of a supersonic flow will decrease until the flow is choked. Each point on the Fanno line corresponds with a different Mach number, and the movement to choked flow is shown in the diagram.