Search results
Results From The WOW.Com Content Network
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity with increasing numbers of energy levels. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if the metal is heated red hot. [9]
A steam explosion is an explosion caused by violent boiling or flashing of water or ice into steam, occurring when water or ice is either superheated, rapidly heated by fine hot debris produced within it, or heated by the interaction of molten metals (as in a fuel–coolant interaction, or FCI, of molten nuclear-reactor fuel rods with water in ...
The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron oxide and hydrogen.
Furthermore, oxidative reaction of zirconium with water releases hydrogen gas, which partly diffuses into the alloy and forms zirconium hydrides. [3] The hydrides are less dense and are weaker mechanically than the alloy; their formation results in blistering and cracking of the cladding – a phenomenon known as hydrogen embrittlement. [4] [5]
Steam can be added to the reaction in order to increase the generation of H 2, via the water-gas shift reaction (WGS) and/or steam methane reforming. The CLR process can produce a syngas with a H 2:CO molar ratio of 2:1 or higher, which is suitable for Fischer–Tropsch synthesis, methanol synthesis, or hydrogen production. The reduced oxygen ...
Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is often hydrogen production , although syngas has multiple other uses such as production of ammonia or methanol .
A thermite reaction using iron(III) oxide. The sparks flying outwards are globules of molten iron trailing smoke in their wake. In the following example, elemental aluminium reduces the oxide of another metal, in this common example iron oxide, because aluminium forms stronger and more stable bonds with oxygen than iron: