Search results
Results From The WOW.Com Content Network
ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient
where is the stress amplitude, ′ is the fatigue strength coefficient, is the number of cycles to failure, ′ is the fatigue ductility coefficient, and is the fatigue strength exponent. Both σ f ′ {\displaystyle \sigma '_{f}} and b {\displaystyle b} are properties of the material.
Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. [ 1 ]
The local necking and the cup and cone fracture surfaces are typical for ductile metals. This tensile test of a nodular cast iron demonstrates low ductility. Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress ...
where ε f is a fatigue ductility coefficient, c is a time and temperature dependent constant, F is an empirical constant, L D is the distance from the neutral point, α is the coefficient of thermal expansion, ΔT is the change in temperature, and h is solder joint thickness. Steinberg: [16] Predicts time to failure of solder joints exposed to ...
The flow stress is an important parameter in the fatigue failure of ductile materials. Fatigue failure is caused by crack propagation in materials under a varying load, typically a cyclically varying load. The rate of crack propagation is inversely proportional to the flow stress of the material.
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ...
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]