Search results
Results From The WOW.Com Content Network
According to this definition, E[X] exists and is finite if and only if E[X +] and E[X −] are both finite. Due to the formula |X| = X + + X −, this is the case if and only if E|X| is finite, and this is equivalent to the absolute convergence conditions in the definitions above. As such, the present considerations do not define finite ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Then φ X (t) = e −|t|. This is not differentiable at t = 0, showing that the Cauchy distribution has no expectation. Also, the characteristic function of the sample mean X of n independent observations has characteristic function φ X (t) = (e −|t|/n) n = e −|t|, using the result from the previous section. This is the characteristic ...
The related concept of conditional probability dates back at least to Laplace, who calculated conditional distributions.It was Andrey Kolmogorov who, in 1933, formalized it using the Radon–Nikodym theorem. [1]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X.
Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Geometric visualisation of the variance of an arbitrary distribution (2, 4, 4, 4, 5, 5, 7, 9):
A probability distribution is not uniquely determined by the moments E[X n] = e nμ + 1 / 2 n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]