Search results
Results From The WOW.Com Content Network
Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, . Then the electron mobility μ is defined as =.
Measured carrier mobilities for electrons and holes are shown in Figure 4. The mobility of carriers in Ga 0.47 In 0.53 As is unusual in two regards: The very high value of electron mobility; The unusually large ratio of electron to hole mobility. The room temperature electron mobility for reasonably pure samples of Ga 0.47 In
Here n is the electron concentration, p the hole concentration, μ e the electron mobility, μ h the hole mobility and e the elementary charge. For large applied fields the simpler expression analogous to that for a single carrier type holds.
The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.
Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.
where the js are the current densities of electrons (e) and holes (p), the μs the charge carrier mobilities, E is the electric field, n and p the number densities of charge carriers, the Ds are diffusion coefficients, and x is position.
The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current.
Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.