When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Theodore Gamelin - Wikipedia

    en.wikipedia.org/wiki/Theodore_Gamelin

    Theodore William Gamelin is an American mathematician. He is a professor emeritus of mathematics at the University of California, Los Angeles. [1]Gamelin was born in 1939. He received his B.S. degree in mathematics from Yale University in 1960, [1] and completed his Ph.D. at the University of California, Berkeley in 1963.

  3. John L. Kelley - Wikipedia

    en.wikipedia.org/wiki/John_L._Kelley

    Kelley's 1955 text, General Topology, which eventually appeared in three editions and several translations, is a classic and widely cited graduate-level introduction to topology. An appendix sets out a new approach to axiomatic set theory, now called Morse–Kelley set theory, that builds on Von Neumann–Bernays–Gödel set theory.

  4. George F. Simmons - Wikipedia

    en.wikipedia.org/wiki/George_F._Simmons

    George Finlay Simmons (March 3, 1925 [1] – August 6, 2019) [2] [3] was an American mathematician who worked in topology and classical analysis. He is known as the author of widely used textbooks on university mathematics.

  5. Topological modular forms - Wikipedia

    en.wikipedia.org/wiki/Topological_modular_forms

    In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory.In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set ⁡ of homotopy classes of continuous maps from X to .

  6. Axiomatic foundations of topological spaces - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_foundations_of...

    If is a set equipped with a mapping satisfying the above properties, then the set of all possible outputs of int satisfies the previous axioms for open sets, and hence defines a topology; it is the unique topology whose associated interior operator coincides with the given int. [28] It follows that on a topological space , all definitions can ...

  7. List of topologies - Wikipedia

    en.wikipedia.org/wiki/List_of_topologies

    The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.

  8. Pointed space - Wikipedia

    en.wikipedia.org/wiki/Pointed_space

    In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint.The distinguished point is just simply one particular point, picked out from the space, and given a name, such as , that remains unchanged during subsequent discussion, and is kept track of during all operations.

  9. Pointless topology - Wikipedia

    en.wikipedia.org/wiki/Pointless_topology

    In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. [1] In this approach it becomes possible to construct topologically interesting spaces from purely algebraic ...