Search results
Results From The WOW.Com Content Network
Similarly, vec(A T) is the vector obtaining by vectorizing A in row-major order. The cycles and other properties of this permutation have been heavily studied for in-place matrix transposition algorithms. In the context of quantum information theory, the commutation matrix is sometimes referred to as the swap matrix or swap operator [1]
Some compiled languages such as Ada and Fortran, and some scripting languages such as IDL, MATLAB, and S-Lang, have native support for vectorized operations on arrays. For example, to perform an element by element sum of two arrays, a and b to produce a third c , it is only necessary to write
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities.
Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.
Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...
The MATLAB language introduces the left-division operator \ to maintain the essential part of the analogy with the scalar case, therefore simplifying the mathematical reasoning and preserving the conciseness: A \ (A * x)==A \ b (A \ A)* x ==A \ b (associativity also holds for matrices, commutativity is no more required) x = A \ b
Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […].