Search results
Results From The WOW.Com Content Network
A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
Multi-swarm optimization is a variant of particle swarm optimization (PSO) based on the use of multiple sub-swarms instead of one (standard) swarm. The general approach in multi-swarm optimization is that each sub-swarm focuses on a specific region while a specific diversification method decides where and when to launch the sub-swarms.
Particle swarm optimization (PSO) is a global optimization algorithm for dealing with problems in which a best solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space and seeded with an initial velocity , as well as a communication channel between the particles.
The Boids model can be used for direct control and stabilization of teams of simple unmanned ground vehicles (UGV) [6] or micro aerial vehicles (MAV) [7] in swarm robotics. For stabilization of heterogeneous UAV-UGV teams, the model was adapted for using onboard relative localization by Saska et al. [ 8 ]
Particle swarm optimization, a swarm intelligence optimization technique Password Settings Object, used in Windows Active Directory environments Phase-shift oscillator , an electronic circuit that generates sine waves
In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given. The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3]
Natural computing, [1] [2] also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials (e.g., molecules) to compute.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.