When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.

  3. Distance - Wikipedia

    en.wikipedia.org/wiki/Distance

    Distance along a path compared with displacement. The Euclidean distance is the length of the displacement vector. ... the vector measuring the difference between two ...

  4. Displacement - Wikipedia

    en.wikipedia.org/wiki/Displacement

    Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object).The actual path covered to reach the final position is irrelevant.

  5. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    Its length represents the distance in relation to an arbitrary reference origin O, and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from O to P. In other words, it is the displacement or translation that maps the origin to P: [1]

  6. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre . [ 5 ] [ 6 ] If x 1 {\displaystyle x_{1}} is the initial position of an object and x 2 {\displaystyle x_{2}} is the final position, then mathematically the ...

  7. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  8. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    Strain can be formulated as the spatial derivative of displacement: = ′, where I is the identity tensor. The displacement of a body may be expressed in the form x = F ( X ) , where X is the reference position of material points of the body; displacement has units of length and does not distinguish between rigid body motions (translations and ...

  9. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.