Search results
Results From The WOW.Com Content Network
Simulated collision of two neutron stars. A stellar collision is the coming together of two stars [1] caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.
Once a star like the Sun has exhausted its nuclear fuel, its core collapses into a dense white dwarf and the outer layers are expelled as a planetary nebula. Stars with around ten or more times the mass of the Sun can explode in a supernova as their inert iron cores collapse into an extremely dense neutron star or black hole.
Another possible explanation is that accretion of gas onto the central neutron star can create a disk that drives highly directional jets, propelling matter at a high velocity out of the star, and driving transverse shocks that completely disrupt the star. These jets might play a crucial role in the resulting supernova.
Researchers have discovered a white dwarf (a dead star), with an oxygen atmosphere surrounding it -- the first of its kind. Astronomers managed to pick up the star from spectral lines: colored ...
Since neutrinos are generated in the core of a supernova, they play a crucial role in the star's collapse and explosion. [7] Neutrino heating is believed to be a critical factor in supernova explosions. [1] Therefore, observation of neutrinos from supernovae provides detailed information about core collapse and the explosion mechanism. [8]
The major unsolved problem with Type II supernovae is that it is not understood how the burst of neutrinos transfers its energy to the rest of the star producing the shock wave which causes the star to explode. From the above discussion, only one percent of the energy needs to be transferred to produce an explosion, but explaining how that one ...
Shock waves in stellar environments, such as shocks inside a core collapse supernova explosion often become radiation mediated shocks. Such shocks are formed by photons colliding with the electrons of the matter, and the downstream of these shocks is dominated by radiation energy density rather than thermal energy of matter.
Silicon burning begins when gravitational contraction raises the star's core temperature to 2.7–3.5 billion kelvins . The exact temperature depends on mass. When a star has completed the silicon-burning phase, no further fusion is possible. The star catastrophically collapses and may explode in what is known as a Type II supernova.