Search results
Results From The WOW.Com Content Network
The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions.A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).
The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.
The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire. By 1860, as formalized in the works of scientists such as Rudolf Clausius and William Thomson , what are now known as the first and second laws were ...
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
[23] [19] However, Max Planck had some misgivings [24] in that while he was impressed by Carathéodory's mathematical prowess, he did not accept that this was a fundamental formulation, given the statistical nature of the second law. [19] In his theory he simplified the basic concepts, for instance heat is not an essential concept but a derived ...
Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the wave function , the quantum-mechanical characterization of an isolated physical system.
This appears to simply be an expression of Newton's second law (F = ma) in terms of body forces instead of point forces. Each term in any case of the Navier–Stokes equations is a body force. A shorter though less rigorous way to arrive at this result would be the application of the chain rule to acceleration:
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.