Search results
Results From The WOW.Com Content Network
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
For example, any electron's magnetic moment is measured to be −9.284 764 × 10 −24 J/T. [17] The direction of the magnetic moment of any elementary particle is entirely determined by the direction of its spin, with the negative value indicating that any electron's magnetic moment is antiparallel to its spin.
The most precise measurement of α comes from the anomalous magnetic dipole moment, or g−2 (pronounced "g minus 2"), of the electron. [2] To make this measurement, two ingredients are needed: A precise measurement of the anomalous magnetic dipole moment, and; A precise theoretical calculation of the anomalous magnetic dipole moment in terms ...
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
The magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field (the Zeeman effect) — hence the name magnetic quantum number. However, the actual magnetic dipole moment of an electron in an atomic orbital arises not only from the electron angular momentum but also from the electron spin ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
When an isolated atom is placed in a magnetic field there is an interaction because each electron in the atom behaves like a magnet, that is, the electron has a magnetic moment. There are two types of interaction. Diamagnetism. When placed in a magnetic field the atom becomes magnetically polarized, that is, it develops an induced magnetic moment.
The spin angular momentum of an electron is 1 / 2 ħ, but the intrinsic electron magnetic moment caused by its spin is also approximately one Bohr magneton, which results in the electron spin g-factor, a factor relating spin angular momentum to corresponding magnetic moment of a particle, having a value of approximately 2. [15]