When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    By means of integration by parts, a reduction formula can be obtained. Using the identity ⁡ = ⁡, we have for all , ⁡ = (⁡) (⁡) = ⁡ ⁡ ⁡. Integrating the second integral by parts, with:

  3. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  6. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.

  7. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    Wallis derived this infinite product using interpolation, though his method is not regarded as rigorous. A modern derivation can be found by examining ∫ 0 π sin n ⁡ x d x {\displaystyle \int _{0}^{\pi }\sin ^{n}x\,dx} for even and odd values of n {\displaystyle n} , and noting that for large n {\displaystyle n} , increasing n ...

  8. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]

  9. John Wallis - Wikipedia

    en.wikipedia.org/wiki/John_Wallis

    John Wallis (/ ˈ w ɒ l ɪ s /; [2] Latin: Wallisius; 3 December [O.S. 23 November] 1616 – 8 November [O.S. 28 October] 1703) was an English clergyman and mathematician, who is given partial credit for the development of infinitesimal calculus.