Search results
Results From The WOW.Com Content Network
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
For fixed points A and B, the set of points M in the plane for which the angle ∠AMB is equal to α is an arc of a circle. The measure of ∠AOB, where O is the center of the circle, is 2α. The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that intercepts the same arc on the circle.
More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc. For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints. If an angle is subtended by a straight or curved segment, the segment is said to subtend the angle.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
where R is the radius of the sphere and h is the distance to the near surface of the sphere. The difference with the case of a perpendicular circle is significant only for spherical objects of large angular diameter, since the following small-angle approximations hold for small values of x {\displaystyle x} : [ 5 ]
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian. The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr.
Let 'arc AB' denote an arc whose two extremities are A and B of a circle with center 'O'. If a perpendicular BM is dropped from B to OA, then: jyā of arc AB = BM; koti-jyā of arc AB = OM; utkrama-jyā of arc AB = MA; If the radius of the circle is R and the length of arc AB is s, the angle subtended by arc AB at O measured in radians is θ ...