Search results
Results From The WOW.Com Content Network
Osazone formation was developed by Emil Fischer, [3] who used the reaction as a test to identify monosaccharides. The formation of a pair of hydrazone functionalities involves both oxidation and condensation reactions. [4] Since the reaction requires a free carbonyl group, only "reducing sugars" participate.
These specific monosaccharide names have conventional three-letter abbreviations, like "Glu" for glucose and "Thr" for threose. Generally, a monosaccharide with n asymmetrical carbons has 2 n stereoisomers. The number of open chain stereoisomers for an aldose monosaccharide is larger by one than that of a ketose monosaccharide of the same length.
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Sucrose, a disaccharide formed from condensation of a molecule of glucose and a molecule of fructose. A disaccharide (also called a double sugar or biose) [1] is the sugar formed when two monosaccharides are joined by glycosidic linkage. [2] Like monosaccharides, disaccharides are simple sugars soluble in water.
Lactose, maltose, and sucrose are all compound sugars, disaccharides, with the general formula C 12 H 22 O 11. They are formed by the combination of two monosaccharide molecules with the exclusion of a molecule of water. [72] Lactose is the naturally occurring sugar found in milk. A molecule of lactose is formed by the combination of a molecule ...
The table shows all aldoses with 3 to 6 carbon atoms, and a few ketoses. For chiral molecules, only the ' D-' form (with the next-to-last hydroxyl on the right side) is shown; the corresponding forms have mirror-image structures. Some of these monosaccharides are only synthetically prepared in the laboratory and not found in nature.
Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH 2)−(CHOH) 3 −H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of a hydroxy group. Discovered in 1929 by Phoebus Levene, [2] deoxyribose is most notable for its presence in DNA.
[1] [2] The simplest ketose is dihydroxyacetone ((CH 2 OH) 2 C=O), which has only three carbon atoms. It is the only ketose with no optical activity . All monosaccharide ketoses are reducing sugars , because they can tautomerize into aldoses via an enediol intermediate, and the resulting aldehyde group can be oxidised , for example in the ...