Search results
Results From The WOW.Com Content Network
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Description Figure Second moment of area Comment A filled circular area of radius r = = = [1] is the second polar moment of area.: An annulus of inner radius r 1 and outer radius r 2
For a circle, the ratio of the area to the circumference (the term for the perimeter of a circle) equals half the radius r. This can be seen from the area formula πr 2 and the circumference formula 2πr. The area of a regular polygon is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point ...
As an example, the area is one quarter the circle when θ ~ 2.31 radians (132.3°) corresponding to a height of ~59.6% and a chord length of ~183% of the radius.
The area of a circle of radius R is . Given the area of a non-circular object A , one can calculate its area-equivalent radius by setting A = π R eq 2 {\displaystyle A=\pi R_{\text{eq}}^{2}}
The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that