When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.

  3. Rayleigh–Lorentz pendulum - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Lorentz_pendulum

    Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...

  4. Spherical pendulum - Wikipedia

    en.wikipedia.org/wiki/Spherical_pendulum

    Spherical pendulum: angles and velocities. In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.

  5. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]

  6. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    "Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.

  7. Swinging Atwood's machine - Wikipedia

    en.wikipedia.org/wiki/Swinging_Atwood's_Machine

    Since the system is invariant under time reversal and translation, it is equivalent to say that the pendulum starts at the origin and is fired outwards: [1] r ( 0 ) = 0 {\displaystyle r(0)=0} The region close to the pivot is singular, since r {\displaystyle r} is close to zero and the equations of motion require dividing by r {\displaystyle r} .

  8. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  9. Kapitza's pendulum - Wikipedia

    en.wikipedia.org/wiki/Kapitza's_pendulum

    Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down. It is named after Russian Nobel Prize laureate physicist Pyotr Kapitza , who in 1951 developed a theory which successfully explains some of its unusual properties. [ 1 ]