When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotational–vibrational coupling - Wikipedia

    en.wikipedia.org/wiki/Rotational–vibrational...

    In physics, rotational–vibrational coupling [1] occurs when the rotation frequency of a system is close to or identical to a natural frequency of internal vibration. The animation on the right shows ideal motion, with the force exerted by the spring and the distance from the center of rotation increasing together linearly with no friction .

  3. Hund's cases - Wikipedia

    en.wikipedia.org/wiki/Hund's_cases

    Hund's coupling cases are idealizations. The appropriate case for a given situation can be found by comparing three strengths: the electrostatic coupling of to the internuclear axis, the spin-orbit coupling, and the rotational coupling of and to the total angular momentum .

  4. Rotary union - Wikipedia

    en.wikipedia.org/wiki/Rotary_union

    This image shows the components needed to make a rotary union; a shaft, housing, bearings, seals and retaining clip. The independent shaft and housing allow for continuous rotation of either component. This is an example of a two passage rotary union with independent channels that allow both liquids and gases to transfer simultaneously. [1]

  5. Rotordynamics - Wikipedia

    en.wikipedia.org/wiki/Rotordynamics

    Rotordynamics (or rotor dynamics) is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage.

  6. Torsional vibration - Wikipedia

    en.wikipedia.org/wiki/Torsional_vibration

    Torsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars.

  7. Universal joint - Wikipedia

    en.wikipedia.org/wiki/Universal_joint

    A universal joint (also called a universal coupling or U-joint) is a joint or coupling connecting rigid shafts whose axes are inclined to each other. It is commonly used in shafts that transmit rotary motion. It consists of a pair of hinges located close together, oriented at 90° to each other, connected by a cross shaft.

  8. Constant-velocity joint - Wikipedia

    en.wikipedia.org/wiki/Constant-velocity_joint

    A Rzeppa-type CV joint. A constant-velocity joint (also called a CV joint and homokinetic joint) is a mechanical coupling which allows the shafts to rotate freely (without an appreciable increase in friction or backlash) and compensates for the angle between the two shafts, within a certain range, to maintain the same velocity.

  9. Four-bar linkage - Wikipedia

    en.wikipedia.org/wiki/Four-bar_linkage

    A slider-crank linkage is a four-bar linkage with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank. There are two types of slider-cranks: in-line and offset. In-line