Search results
Results From The WOW.Com Content Network
In the case of macroscopic bodies, perfectly elastic collisions are an ideal never fully realized, but approximated by the interactions of objects such as billiard balls. When considering energies, possible rotational energy before and/or after a collision may also play a role.
What distinguishes different types of collisions is whether they also conserve kinetic energy of the system before and after the collision. Collisions are of two types: Elastic collision If all of the total kinetic energy is conserved (i.e. no energy is released as sound, heat, etc.), the collision is said to be perfectly elastic.
0 < e < 1: This is a real-world inelastic collision, in which some kinetic energy is dissipated. The objects rebound with a lower separation speed than the speed of approach. e = 1: This is a perfectly elastic collision, in which no kinetic energy is dissipated. The objects rebound with the same relative speed with which they approached.
The rapidly moving particles constantly collide among themselves and with the walls of the container, and all these collisions are perfectly elastic. Interactions (i.e. collisions) between particles are strictly binary and uncorrelated, meaning that there are no three-body (or higher) interactions, and the particles have no memory.
The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions. Under various conditions of temperature and pressure, many real gases behave qualitatively like an ideal gas where the gas molecules (or atoms for monatomic gas) play the role of the ideal particles.
An elastic collision is one in which no kinetic energy is transformed into heat or some other form of energy. Perfectly elastic collisions can occur when the objects do not touch each other, as for example in atomic or nuclear scattering where electric repulsion keeps the objects apart. A slingshot maneuver of a satellite around a planet
The simple effect from two same-mass efficiently elastic colliding objects constrained to a straight path is the basis of the effect seen in the cradle and gives an approximate solution to all its activities. For a sequence of same-mass elastic objects constrained to a straight path, the effect continues to each successive object.
An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms , causing a heating effect, and the bodies are deformed.