Search results
Results From The WOW.Com Content Network
By doing the above step, we have found the slope of the line that is tangent to the solution curve at the point (,). Recall that the slope is defined as the change in y {\displaystyle y} divided by the change in t {\displaystyle t} , or Δ y Δ t {\textstyle {\frac {\Delta y}{\Delta t}}} .
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.
A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h , h represents a small change in x , and it can be either positive or negative.
Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points. This results in a continuous curve, with a discontinuous derivative (in general), thus of differentiability class.
Instead, this tangent is estimated by using the original Euler's method to estimate the value of () at the midpoint, then computing the slope of the tangent with (). Finally, the improved tangent is used to calculate the value of + from . This last step is represented by the red chord in the diagram.
Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point. If the tangent line at the right end point is considered (which can be estimated using Euler's Method), it has the opposite problem. [3]
The curve (red) is what the algorithm is trying to draw. The raster points (black) are used as starting points to find the closest points on the curve (red circles). The spacing between each raster point is exaggerated to show the individual curve points; to more accurately trace the curve, more raster points would be used. [4]