When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Superposition principle - Wikipedia

    en.wikipedia.org/wiki/Superposition_principle

    A primary approach to computing the behavior of a wave function is to write it as a superposition (called "quantum superposition") of (possibly infinitely many) other wave functions of a certain type—stationary states whose behavior is particularly simple. Since the Schrödinger equation is linear, the behavior of the original wave function ...

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.

  4. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  5. Quantum superposition - Wikipedia

    en.wikipedia.org/wiki/Quantum_superposition

    The quantum wave equation can be solved using functions of position, (), or using functions of momentum, () and consequently the superposition of momentum functions are also solutions: = + The position and momentum solutions are related by a linear transformation, a Fourier transformation. This transformation is itself a quantum superposition ...

  6. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).

  7. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    This shows the superposition of three wave components—with respectively 22, 25 and 29 wavelengths fitting in a periodic horizontal domain of 2 km length. The wave amplitudes of the components are respectively 1, 2 and 1 meter. Part of the previous derivation is the Taylor series approximation that:

  8. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.