When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...

  3. File:Auto-and heterotrophs.svg - Wikipedia

    en.wikipedia.org/wiki/File:Auto-and_heterotrophs.svg

    English: Cycle between autotrophs and heterotrophs. Autotrophs can use carbon dioxide (CO 2) and water to form oxygen and complex organic compounds, mainly through the process of photosynthesis. All organisms can use such compounds to again form CO 2 and water through cellular respiration.

  4. Photoautotroph - Wikipedia

    en.wikipedia.org/wiki/Photoautotroph

    Winogradsky column showing Photoautotrophs in purple and green. Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy).

  5. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    [106] [107] In tropical grasses, including maize, sorghum, sugarcane, Bermuda grass and in the dicot amaranthus, leaf photosynthetic rates were around 38−40 μmol CO 2 ·m −2 ·s −1, and the leaves have two types of green cells, i.e. outer layer of mesophyll cells surrounding a tightly packed cholorophyllous vascular bundle sheath cells.

  6. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  7. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Cycle between autotrophs and heterotrophs. Autotrophs use light, carbon dioxide (CO 2), and water to form oxygen and complex organic compounds, mainly through the process of photosynthesis (green arrow). Both types of organisms use such compounds via cellular respiration to both generate ATP and again form CO 2 and water (two red arrows).

  8. Euglena - Wikipedia

    en.wikipedia.org/wiki/Euglena

    Euglena is a genus of single cell flagellate eukaryotes.It is the best known and most widely studied member of the class Euglenoidea, a diverse group containing some 54 genera and at least 200 species.

  9. Chloroplast - Wikipedia

    en.wikipedia.org/wiki/Chloroplast

    Chloroplasts, containing thylakoids, visible in the cells of Ptychostomum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.