Search results
Results From The WOW.Com Content Network
The absolute vorticity is computed from the air velocity relative to an inertial frame, and therefore includes a term due to the Earth's rotation, the Coriolis parameter. The potential vorticity is absolute vorticity divided by the vertical spacing between levels of constant (potential) temperature (or entropy ).
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
where is the relative vorticity, is the layer depth, and is the Coriolis parameter. The conserved quantity, in parenthesis in equation (3), was later named the shallow water potential vorticity. For an atmosphere with multiple layers, with each layer having constant potential temperature, the above equation takes the form
Circulation can be related to curl of a vector field V and, more specifically, to vorticity if the field is a fluid velocity field, =.. By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = =
In fluid mechanics, the Okubo–Weiss parameter, (normally given by "W") is a measure of the relative importance of deformation and rotation at a given point. It is calculated as the sum of the squares of normal and shear strain minus the relative vorticity.
Thus, as a fluid parcel moves equatorward (βy approaches zero), the relative vorticity must increase and become more cyclonic in nature. Conversely, if the same fluid parcel moves poleward, (βy becomes larger), the relative vorticity must decrease and become more anticyclonic in nature.
Animation of a Rankine vortex. Free-floating test particles reveal the velocity and vorticity pattern. The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free ...
The absolute vorticity composes the planetary vorticity and the relative vorticity , reflecting the Earth’s rotation and the parcel’s rotation with respect to the Earth, respectively. The conservation of absolute vorticity η {\displaystyle \eta } determines a southward gradient of ζ {\displaystyle \zeta } , as denoted by the red shadow in c .