When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    It is the longest side of any such triangle; the two other shorter sides of such a triangle are called catheti or legs. The length of the hypotenuse can be found using the Pythagorean theorem , which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the two legs.

  4. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 4 considers special classes of Pythagorean triangles, including those with sides in arithmetic progression, nearly-isosceles triangles, and the relation between nearly-isosceles triangles and square triangular numbers. The next two chapters characterize the numbers that can appear in Pythagorean triples, and chapters 7–9 find sets of ...

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Many results about plane figures are proved, for example, "In any triangle, two angles taken together in any manner are less than two right angles." (Book I proposition 17) and the Pythagorean theorem "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle ...

  6. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  7. Pythagoras - Wikipedia

    en.wikipedia.org/wiki/Pythagoras

    The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). Although Pythagoras is most famous today for his alleged mathematical discoveries, [132] [207] classical historians dispute whether he himself ever actually made any significant contributions to the field.

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Two lines that are parallel to the same line are also parallel to each other. In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides (Pythagoras' theorem). [6] [7] The law of cosines, a generalization of Pythagoras' theorem. There is no upper limit to the area of a triangle. (Wallis axiom) [8]

  9. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. [ 1 ] [ 2 ] This statement permits the inclusion of degenerate triangles , but some authors, especially those writing about elementary geometry, will exclude this ...