Search results
Results From The WOW.Com Content Network
When genes are located on the same chromosome and no crossing over took place before the segregation of the chromosomes into the gametes, the genetic traits will be inherited in connection, because of the genetic linkage. These cases constitute an exception to the Mendelian rule of independent assortment.
Causes of differences between individuals include independent assortment, the exchange of genes (crossing over and recombination) during reproduction (through meiosis) and various mutational events. There are at least three reasons why genetic variation exists between populations.
Genes are often considered the fundamental units of heredity and are typically encoded in DNA. A particular gene can have multiple different versions, or alleles, and a single gene may influence many different phenotypes. gene dosage The number of copies of a particular gene present in a genome.
Independent assortment occurs in eukaryotic organisms during meiotic metaphase I, and produces a gamete with a mixture of the organism's chromosomes. The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent chromosome along the metaphase plate with respect to the other bivalent chromosomes.
This principle of "independent assortment" of genes is fundamental to genetic inheritance. [28] However, the frequency of recombination is actually not the same for all gene combinations. This leads to the notion of "genetic distance", which is a measure of recombination frequency averaged over a (suitably large) sample of pedigrees.
The law of independent assortment states that traits controlled by different genes are going to be inherited independently of each other. [3] Mendel was able to determine this law out because in his crosses he was able to get all four possible phenotypes.
The candidate gene approach to conducting genetic association studies focuses on associations between genetic variation within pre-specified genes of interest, and phenotypes or disease states. This is in contrast to genome-wide association studies (GWAS), which is a hypothesis-free approach that scans the entire genome for associations between ...
Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents.