Search results
Results From The WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
The list comprehension will immediately create a large list (with 78498 items, in the example, but transiently creating a list of primes under two million), even if most elements are never accessed. The generator comprehension is more parsimonious.
This leads to duplicating some functionality. For example: List comprehensions vs. for-loops; Conditional expressions vs. if blocks; The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the former is for expressions, the latter is for statements
Python has a syntax modeled on that of list comprehensions, called a generator expression that aids in the creation of generators. The following extends the first example above by using a generator expression to compute squares from the countfrom generator function:
The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir. The above trick used in Python also works in Elixir, but the compiler will throw a warning if it spots this.
Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar. The same can be achieved in Scala using Sequence Comprehensions, where the "for" keyword returns a list of the yielded variables using the "yield" keyword. [6]
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement . Unlike other for loop constructs, however, foreach loops [ 1 ] usually maintain no explicit counter: they essentially say "do this to everything in this ...