Search results
Results From The WOW.Com Content Network
The "current gain" of a bipolar transistor, or , is normally given as a dimensionless number, the ratio of to (or slope of the -versus-graph, for ). In the cases above, gain will be a dimensionless quantity, as it is the ratio of like units (decibels are not used as units, but rather as a method of indicating a logarithmic relationship).
For transistors, the current-gain–bandwidth product is known as the f T or transition frequency. [4] [5] It is calculated from the low-frequency (a few kilohertz) current gain under specified test conditions, and the cutoff frequency at which the current gain drops by 3 decibels (70% amplitude); the product of these two values can be thought of as the frequency at which the current gain ...
Another useful characteristic is the common-base current gain, α F. The common-base current gain is approximately the gain of current from emitter to collector in the forward-active region. This ratio usually has a value close to unity; between 0.980 and 0.998. It is less than unity due to recombination of charge carriers as they cross the ...
The current gain is unity, so the same current is delivered to the output load R L, producing by Ohm's law an output voltage v out = v Thév R L / R S, that is, the first form of the voltage gain above. In the second case R S << 1/g m and the Thévenin representation of the source is useful, producing the second form for the gain, typical of ...
In other words, the circuit has current gain (which depends largely on the h FE of the transistor) instead of voltage gain. A small change to the input current results in much larger change in the output current supplied to the output load. One aspect of buffer action is transformation of impedances.
Nonetheless, the voltage gain is appreciable even for small loads: according to the table, with R S = r E the gain is A v = g m R L / 2. For larger source impedances, the gain is determined by the resistor ratio R L / R S, and not by the transistor properties, which can be an advantage where insensitivity to temperature or transistor variations ...
Collector current is approximately β (common-emitter current gain) times the base current. It is typically greater than 100 for small-signal transistors but can be smaller in transistors designed for high-power applications. Unlike the field-effect transistor (see below), the BJT is a low-input-impedance device.
A third transistor can be added to a Darlington pair to give even higher current gain, making a Darlington triplet. The emitter of the second transistor in the pair is connected to the base of the third, as the emitter of first transistor is connected to the base of the second, and the collectors of all three transistors are connected together.