Search results
Results From The WOW.Com Content Network
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.
QR decomposition — orthogonal matrix times triangular matrix RRQR factorization — rank-revealing QR factorization, can be used to compute rank of a matrix; Polar decomposition — unitary matrix times positive-semidefinite Hermitian matrix; Decompositions by similarity: Eigendecomposition — decomposition in terms of eigenvectors and ...
Also known as: UTV decomposition, ULV decomposition, URV decomposition. Applicable to: m-by-n matrix A. Decomposition: =, where T is a triangular matrix, and U and V are unitary matrices. Comment: Similar to the singular value decomposition and to the Schur decomposition.
An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]
QR decomposition, a decomposition of a matrix QR algorithm, an eigenvalue algorithm to perform QR decomposition; Quadratic reciprocity, a theorem from modular arithmetic; Quasireversibility, a property of some queues; Reaction quotient (Q r), a function of the activities or concentrations of the chemical species involved in a chemical reaction
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...
In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).