Search results
Results From The WOW.Com Content Network
Spin is described mathematically as a vector for some particles such as photons, and as a spinor or bispinor for other particles such as electrons. Spinors and bispinors behave similarly to vectors: they have definite magnitudes and change under rotations; however, they use an unconventional "direction". All elementary particles of a given kind ...
This electrical force is then inserted in Navier-Stokes equation, as a body (volumetric) force. Electrohydrodynamics employed for Airflow control and Electrospinning applications. EHD covers the following types of particle and fluid transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis, electro-osmosis, and electrorotation.
Electrons in metals also behave as if they were free. In reality the particles that are commonly termed electrons in metals and other solids are quasi-electrons—quasiparticles, which have the same electrical charge, spin, and magnetic moment as real electrons but might have a different mass. [134]
Electromagnetism is the force that acts between electrically charged particles. This phenomenon includes the electrostatic force acting between charged particles at rest, and the combined effect of electric and magnetic forces acting between charged particles moving relative to each other.
The spin magnetic moment is intrinsic for an electron. [3] It is = . Here S is the electron spin angular momentum. The spin g-factor is approximately two: . The factor of two indicates that the electron appears to be twice as effective in producing a magnetic moment as a charged body for which the mass and charge distributions are identical.
An interaction occurs when two particles (typically, but not necessarily, half-integer spin fermions) exchange integer-spin, force-carrying bosons. The fermions involved in such exchanges can be either elementary (e.g. electrons or quarks ) or composite (e.g. protons or neutrons ), although at the deepest levels, all weak interactions ...
Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in a manner such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.
By contrast, an isolated Ni atom (electron configuration = 3d 8 4s 2) in a cubic crystal field will have two unpaired electrons of the same spin (hence, =) and would thus be expected to have in the localized electron model a total spin magnetic moment of = (but the measured spin-only magnetic moment along one axis, the physical observable, will ...