Search results
Results From The WOW.Com Content Network
SipHash computes a 64-bit message authentication code from a variable-length message and 128-bit secret key. It was designed to be efficient even for short inputs, with performance comparable to non-cryptographic hash functions, such as CityHash; [4]: 496 [2] this can be used to prevent denial-of-service attacks against hash tables ("hash flooding"), [5] or to authenticate network packets.
PMAC (cryptography) Poly1305-AES: ... SipHash: 32, 64 or 128 bits non-collision-resistant PRF: HighwayHash [16] 64, 128 or 256 bits non-collision-resistant PRF: UMAC:
The Commercial National Security Algorithm Suite (CNSA) is a set of cryptographic algorithms promulgated by the National Security Agency as a replacement for NSA Suite B Cryptography algorithms. It serves as the cryptographic base to protect US National Security Systems information up to the top secret level, while the NSA plans for a ...
Non-cryptographic hash functions optimized for software frequently involve the multiplication operation. Since in-hardware multiplication is resource-intensive and frequency-limiting, ASIC-friendlier designs had been proposed, including SipHash (which has an additional benefit of being able to use a secret key for message authentication), NSGAhash, and XORhash.
In cryptography, a message authentication code (MAC), sometimes known as an authentication tag, is a short piece of information used for authenticating and integrity-checking a message. In other words, it is used to confirm that the message came from the stated sender (its authenticity) and has not been changed (its integrity).
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
BLAKE was submitted to the NIST hash function competition by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. In 2008, there were 51 entries. BLAKE made it to the final round consisting of five candidates but lost to Keccak in 2012, which was selected for the SHA-3 algorithm.
The two building blocks of the construction, the algorithms Poly1305 and ChaCha20, were both independently designed, in 2005 and 2008, by Daniel J. Bernstein. [2] [3]In March 2013, a proposal was made to the IETF TLS working group to include Salsa20, a winner of the eSTREAM competition [4] to replace the aging RC4-based ciphersuites.