When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Additionally, Mamba simplifies its architecture by integrating the SSM design with MLP blocks, resulting in a homogeneous and streamlined structure, furthering the model's capability for general sequence modeling across data types that include language, audio, and genomics, while maintaining efficiency in both training and inference.

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Transformers typically are first pretrained by self-supervised learning on a large generic dataset, followed by supervised fine-tuning on a small task-specific dataset. The pretrain dataset is typically an unlabeled large corpus, such as The Pile. Tasks for pretraining and fine-tuning commonly include: language modeling [12] next-sentence ...

  4. Transform coding - Wikipedia

    en.wikipedia.org/wiki/Transform_coding

    Transform coding is a type of data compression for "natural" data like audio signals or photographic images.The transformation is typically lossless (perfectly reversible) on its own but is used to enable better (more targeted) quantization, which then results in a lower quality copy of the original input (lossy compression).

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Transformer architecture is now used in many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [33]

  6. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  7. Modulation transformer - Wikipedia

    en.wikipedia.org/wiki/Modulation_transformer

    The primary winding of a modulation transformer is fed by an audio amplifier that has about 1/2 of the rated input power of the transmitter's final amplifier stage. The secondary winding is in series with the power supply of that final radio-frequency amplifier stage, thereby allowing the audio signal to lower and raise the instantaneous DC ...

  8. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  9. Constant-Q transform - Wikipedia

    en.wikipedia.org/wiki/Constant-Q_transform

    At the bottom of the piano scale (about 30 Hz), a difference of 1 semitone is a difference of approximately 1.5 Hz, whereas at the top of the musical scale (about 5 kHz), a difference of 1 semitone is a difference of approximately 200 Hz. So for musical data the exponential frequency resolution of constant-Q transform is ideal.